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e (1” i1s some signed measure on JF,,.

e Examples:

L.

p (X1 — Xo) = H(X1]|X2)
p (X — X1) = H(X2|Xy),
pr(XinXz) = I(X1;X)



2. Inclusion-Exclusion formulation in set-theory
P (X1 U Xp) = p*(X1) + p*(Xa) — (X1 N Xo)
corresponds to
H(X,,X9)=H(X1)+ H(X2) — I(X1; X3)

in information theory.



3.1 Preliminaries

~

Definition 3.1 The field F,, generated by sets X 1, Xz, .-+, X, is the collection
of sets which can be obtained by any sequence of usual set operations (union,
intersection, complement, and difference) on X7, Xo,--- , X,,.

Definition 3.2 The atoms of F,, are sets of the form N}'_,Y;, where Y; is either
X, or X ¢ the complement of X;.

Example 3.3
o The sets X 1 and XQ generate the field Fs.
e There are 4 atoms in Fs.

e There are a total of 16 sets in F5



Definition 3.4 A real function u defined on F,, is called a signed measure if
it is set-additive, i.e., for disjoint A and B in F,,,

u(AU B) = pu(A) + u(B).

Remark u()) = 0.



Example 3.5

e A signed measure p on Fy is completely specified by the values on the
atoms

u(X1 N Xo), p(XEN Xy), u(X;NXS), w(XEN XS)

e The value of 1 on other sets in F5 are obtained by set-additivity.



Section 3.3
Construction of the [-Measure Y*

Let X be a set corresponding to a r.v. X.
N, ={1,2,--- ,n}.

Universal set

Empty atom of F,,

Ag= () X;
€N,

A is the set of other atoms of F,,, called non-empty atoms. |A| = 2™ — 1.

A signed measure p on F,, is completely specified by the values of 1 on
the nonempty atoms of F,,.



Notations For nonempty subset G of N,,:
o X = (XZ,Z S G)

e X = UiEGXz'
Theorem 3.6 Let

B = {XG . (G is a nonempty subset of Nn} .

Then a signed measure pu on F,, is completely specified by {u(B), B € B}, which
can be any set of real numbers.



Proof of Theorem 3.6

Al = B[ =2" -1

u — column k-vector of u(A), A € A

h — column k-vector of u(B),B € B

Obviously can write h = C,,u, where C,, is a unique k x k matrix.

On the other hand, for each A € A, u(A) can be expressed as a linear
combination of u(B), B € B by applying

wWAnB—-C) = pwp(A-C)+u(B—-C)—pu(AuB—-C)
w(A—B) = p(AUB)—u(B).

(see Appendix 3.A) That is, u = D, h.

Then u = (D,,C,,)u, showing that D,, = (C,)~! is unique.



Two Lemmas

Lemma 3.7

wANB—-C)=pu(AUuC)+ u(BUC) —u(AUuBUC) — u(C).

Lemma 3.8

[(X:Y|Z2)=H(X,2)+ H(Y,Z)— H(X,Y,Z) — H(Z).



e Construct the I-Measure pu* on F,, using by defining
p(Xe) = H(Xe)

for all nonempty subsets G of N,,.

e 1™ is meaningful if it is consistent with all Shannon’s information mea-

sures via the substitution of symbols, i.e., the following must hold for
all (not necessarily disjoint) subsets G, G’, G" of N,, where G and G’ are
nonempty: 3 3 3

W XeNXg — Xagr) =1(Xg; Xgr| Xar)

/L*(XG M XG’) = ](Xg, XG’)

uH(Xe — Xgr) = H(Xg| Xar)
G=G and G" =10

~

p(Xa) = H(Xg)



Theorem 3.9 u* is the unique signed measure on F,, which is consistent with
all Shannon’s information measures.

Implications

e Can formally regard Shannon’s information measures for n r.v.’s as the
unique signed measure p* defined on F,,.

e Can employ set-theoretic tools to manipulate expressions of Shannon’s
information measures.



Proof of Theorem 3.9

W (XeNXe — Xar)
= p*(Xeuer) + 1 (Xewuer) — p*Xeueuar) — 1 (Xar)
= H(Xgug) + H(Xguer) — H(Xguarugr) — H(Xgr)
= I(Xg; Xer|Xar),

e In order that p* is consistent with all Shannon’s information measures,
w(Xe) = H(Xq)
for all nonempty subsets G of N,,.

e Thus u* is the unique signed measure on JF,, which is consistent with all
Shannon’s information measures.



3.4 P* can be Negative

e //* is nonnegative for n = 2.

o For n =3, p*(X1 N Xy N X3) =I(X1; X2; X3) can be negative.

Example 3.10
e X, X5 —ii.d. binary r.v.’s uniform on {0, 1}
o X3 = X;+ X5 mod 2
e Lasy to check:
— H(X;) =1, for all ¢

— X1, X5, X3 are pairwise independent, so that
H(X;,X;)=2and I(X;;X,;)=0, forall i # j

— Under these constraints, I(X7; X2; X3) = —1.



3.5 Information Diagrams

[(X1; X5; X5)

[(X; X5 X3)

H (X))



X2

The information diagram for Example 3.10






Theorem 3.11 If there is no constraint on Xy, Xo,---,X,,, then u* can take
any set of nonnegative values on the nonempty atoms of F,.

Proof
o Let Y4, A € A be mutually independent r.v.’s.
e Define X;,7=1,2,---,n by

XZ-:(YA:AEAandAC)N(i).

e Claim: X4, X9, -+, X, so constructed induce the I-Measure p* such that
w(A)=H(Ya), for all A € A.

which are arbitrary nonnegative numbers.



e Consider

H(Xg) = H(X;i€@)
— H((Yj:AcAand AC X;),i €G)
— H(Y4:Aec Aand A C Xg)

e On the other hand,

e Thus

Z H(Y4) = Z p(A)

AcA:ACXa AcA:ACXa

e One solution is

n(A) = H(Yy,), for all A € A.

e By the uniqueness of p*, this is the only solution.



Information Diagrams for
Markov Chains

It X1 - Xo — -+ — X,, form a Markov chain, then the structure of u*
is much simpler and hence the information diagram can be simplified.

Forn = 3, X1 — X2 — X3 IHI(Xl,XngQ) = 0. So the atom X]_ng_XQ
can be suppressed.

The values of 4* on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. In particular,

(X5 X203 X3) = (X1 X3) = I(X1; X3)

Thus, ©* is a measure.






e For n =4, u* vanishes on the following atoms:
X, NX5NX3NX§
XiNX5NnXsNXy
X NnX5NnX5$n X,
XiNXoNX§NXy
XeNnXonX§nX,y

e The information diagram can be displayed in two dimensions.

e The values of ©* on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, p* is a measure.






e For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.

e The values of ©* on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, ©* is a measure.

e See Ch. 12 for a detailed discussion in the context of Markov random field.




3.6 Examples of Applications

e To obtain information identities is WYSIWYG.
e To obtain information inequalities:

— If p* is nonnegative, if A C B, then

pr(A) < p(B)

because
pr(A) < p (A) +p*(B—A) = p*(B)

— If u* is a signed measure, need to invoke the basic inequalities.



Example 3.12 (Concavity of Entropy) Let X; ~ pi(x) and X5 ~ ps(x).
Let

X ~p(z) = Ap1(z) + Apa(z),
where 0 < A <1 and A =1 — ). Show that

H(X) > MH(X1) + AH(X5).




Example 3.13 (Convexity of Mutual Information) Let

(X,Y) ~p(x,y) = p(x)p(y|).

Show that for fixed p(x), I(X;Y) is a convex functional of p(y|x).

/ p(y|¥) ﬂw\
X Y

P,(Y|X) —=

|

Setup: I(X;Z) = 0.



Example 3.14 (Concavity of Mutual Information) Let

(X,Y) ~p(x,y) = p(x)p(y|).

Show that for fixed p(y|x), I(X;Y) is a concave functional of p(zx).

p(x)

pOylx) —— Y

p,(x) ©
/=

Setup: 7 — X — Y.



Shannon’s Perfect Secrecy Theorem

X — plaintext
Y — ciphertext
Z — key

Perfect Secrecy: I(X;Y) =0
Decipherability: H(X|Y,Z) =0

These requirement implies H(Z) > H(X), i.e., the length of the key is at
least the same as the length of the plaintext. Lower bound achievable by
“one-time pad”.

Shannon (1949) gave a combinatorial proof.

Can readily be proved by an information diagram.



Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, Y
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

H(X|Y,Z)=0.
Show that this constraint implies

I[(X:Y) > H(X)— H(2).

Remark Do not need to make these assumptions about the scheme:
e HY|X,Z)=0
e [(X;7)=0



Example 3.17 (Data Processing Theorem) If X - Y — Z — T then
o I(X:T)<I(Y;Z)
e in fact

IY;2)=1(X;T)+ 1(X; Z|T)+ 1(Y;T|X)+ 1(Y; Z|X,T)



Example 3.18 If X - Y — 7 —- 1 — U, then

HY)+H(T)=I1(Z;X,Y,T,U)+ I(X,Y;T,U) + HY|Z) + H(T|Z)

e Very difficult to discover without an information diagram.

e Instrumental in proving an outer bound for the multiple description prob-
lem.



Highlight of Ch. |2

e The I-Measure completely characterizes a class of Markov structures called
full conditional independence.

e Markov random field is a special case.
e Markov chain is a special case of Markov random field.

e Analysis of these Markov structures becomes completely set-theoretic.

Example 12.22

Hl : (X17X2) L (X37X4) = H2 : (X17X27X3) L X4
(X1, X3) L (X2, X4) (X1, X2, X4) L X5

e Fach (conditional) independency forces p* to vanish on the atoms in the
corresponding set.

e B.g., (X1,X3) L (X3,X4) & p* vanishes on the atoms in (X; U X3) N
(X3 U Xy).



Analysis of Example 12.12




Proving Information Inequalities

Information inequalities that are implied by the basic inequalities are
called Shannon-type inequalities.

They can be proved by means of a linear program called ITIP (Information
Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk /~ITIP/

A version running on C called Xitip was developed at EPFL (2007):

http:/ /xitip.epfl.ch/

See Ch. 13 and 14 for discussion.



ITIP Examples

. >> ITIPCPH(XYZ) <= H(X) + H(Y) + H(Z)?)
True

. >> ITIP(CPI(X;Z) = 0°,°I(X;2lY) = 02,°I(X;Y) = 0?)
True

. >> ITIPC’X/Y/Z/T’, *X/Y/Z°, °Y/Z/T’)
Not provable by ITIP

. >> ITIPC’I(Z;U) - I(Z;UlX) - I(Z;UlY) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP

#4 is a so-called non-Shannon-type inequalities which is valid but not
implied by the basic inequalities. See Ch. 15 for discussion.



