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2.] Independence and Markov Chain

Notations

X discrete random variable taking values in X
{px(x)} probability distribution for X
Sx support of X

o If Sx = X, we say that p is strictly positive.

e Non-strictly positive distributions are dangerous.



Definition 2.1 Two random variables X and Y are independent, denoted by
X 1Y, it
p(z,y) = p(z)p(y)

for all z and y (i.e., for all (z,y) € X x ).

Definition 2.2 (Mutual Independence) For n > 3, random variables
X1, X9,---, X, are mutually independent if

p(x1, T2, -, Tn) = p(z1)p(x2) - p(Tn)
for all x1,29,---, x,,.
Definition 2.3 (Pairwise Independence) For n > 3, random variables

X1, Xo,---, X, are pairwise independent if X; and X, are independent for all
1 <1< 3 <n.



Definition 2.4 (Conditional Independence) For random variables XY,
and Z, X is independent of Z conditioning on Y, denoted by X 1 Z|Y, if

p(z,y,2)p(y) = p(z,y)p(y, 2)
for all x,y, and z, or equivalently,

p(z,y)p(y,2) __ ,
p@wxwz{ o = bl y)p(zly) it p(y) >0

0 otherwise.



Proposition 2.5 For random variables XY, and Z, X | Z|Y if and only if

p(z,y,2) = a(z,y)b(y, 2)

for all z, y, and z such that p(y) > 0.



Proposition 2.6 (Markov Chain) For random variables X7, Xo, -+, X,
where n > 3, X; — X9 — -+ — X, forms a Markov chain if

p(x1, 22, -, Tn)p(x2)p(z3) - - P(Tr—1)

— p($1,$2)]9($2,£€3)"'p(xn—1,$n)

tor all z1,x2,---, x,, or equivalently,

p(ﬂfl,ﬂfg, e 73371) —

p(331,3?2)p($3!5132) s 'p($n|$n—1) if p($2),p(x3)> e 71?(%@—1) > ()
0 otherwise.

Proposition 2.7 X; — Xy — --- — X,, forms a Markov chain if and only it
X, — X,,_1 — -+ — X forms a Markov chain.



Proposition 2.8 X; — Xy — --- — X, forms a Markov chain if and only if

X1 — Xo — X3
(Xl,XQ) — X3 — X4

(X1, X2, -, Xp2) = X5o1 — X
form Markov chains.
Proposition 2.9 X; — Xy — --- — X, forms a Markov chain if and only if

]9(%1,%2, T ,iUn) — f1($1,$2)f2($2,333) e fn—1($n—1,$n)

for all z1,xs, -+, x, such that p(zs),p(z3), - - ,p(xp_1) > 0.



Proposition 2.10 (Markov subchains) Let N, = {1,2,--- ,n} and let
X; — X9 — -+ — X, form a Markov chain. For any subset o of N,,, denote
(X;,1 € a) by X,. Then for any disjoint subsets aq, ag, - - - , a,, of N}, such that

k1 < ko <--- <k
forall k; € aj, 7 =1,2,---,m,
X0é1_>X062_>”°_>XC¥m

forms a Markov chain. That is, a subchain of X1 — X9 — --- — X, is also a
Markov chain.

Example 2.11 Let X; — X9 — --- — X9 form a Markov chain and
a; = {1,2}, as = {4}, az = {6,8}, and ay = {10} be subsets of Njg. Then
Proposition 2.10 says that

(X1, X2) — Xy — (X6, Xs) — Xq0

also forms a Markov chain.



Proposition 2.12 Let X, X5, X3, and X, be random variables such that
p(x1, e, x3,24) is strictly positive. Then

X1 L Xy4|(X2, X3)

= X, L (X5 X0)|Xs.
X1J-X3|(X2,X4)} L (Xs, X IX

e Not true if p is not strictly positive
e Let X1 =Y, Xo=7,and Xg=X,=(Y,Z), where Y 1 Z
e Then X1 1 X4‘(X2,X3), X1 1 X3‘(X2,X4), but X1 7[ (Xg,X4)’X2.

e p is not strictly positive because p(x1,x2,x3,x4) = 0 if 3 # (x1,22) or
L4 # (3;17332)'



2.2 Shannon’s Information Measures

e Kntropy
e Conditional entropy
e Mutual information

e (Conditional mutual information



Definition 2.13 The entropy H(X) of a random variable X is defined as
Zp ) log p(

e Convention: summation is taken over Sx.
e When the base of the logarithm is «, write H(X) as H,(X).
e Entropy measures the uncertainty of a discrete random variable.

e The unit for entropy is

bit if o = 2
nat ifa=c¢e
D-it fa=D

e H(X) depends only on the distribution of X but not on the actual value
taken by X, hence also write H(p).

e A bit in information theory is different from a bit in computer science.



Entropy as Expectation

Convention
=) plx)g(z)
where summation is over Sx.
Linearity
Elf(X)+g(X)] = Ef(X)+ Eg(X)
Can write

H(X) = —FElogp(X Zp ) log p(a

In probability theory, when Eg(X) is considered, usually g(x) depends
only on the value of z but not on p(x).



Binary Entropy Function

e For 0 < v <1, define the binary entropy function

he () = —ylogy — (1 — ) log(1 — )
with the convention 0log(0 = 0.
e For X ~ {v,1 —~},

1

o hy(7y) achieves the maximum value 1 when v = 3.



hp(7)

0.5



Definition 2.14 The joint entropy H(X,Y) of a pair of random variables X
and Y is defined as

H(X,Y)=-) p(z,y)logp(z,y) = —Elogp(X,Y).

L,y

Definition 2.15 For random variables X and Y, the conditional entropy of
Ygiven X is defined as

H(Y|X)==) p(z,y)logp(ylz) = —Elogp(Y|X).

L,Y



o Write

H(Y|X) = Zp — > p(ylz)log p(ylx)

_ Yy _

e The inner sum is the entropy of Y conditioning on a fixed x € Sx, denoted
by H(Y|X = x).

e Thus

e Similarly,
HY|X,Z) = Zp H(Y|X,Z = 2),

where

H(Y|X,Z=z)=-) plx,y|z)logp(ylz, 2).

L,y



Proposition 2.16
HX,)Y)=H(X)+ H(Y|X)

and
H(X,Y)=H(Y)+ H(X|Y).

Proof Consider
H(X,Y) — —Elng(X,Y)
= —FElog[p(X)p(Y|X)]

= —Elogp(X) — Elogp(Y|X)
— H(X)+H(Y|X).

a) summation is over Sxy

b) linearity of expectation



Definition 2.17 For random variables X and Y, the mutual information be-
tween X and Y is defined as

I(X;Y)=Zp(w,y)logp]z;w’ ) — Elog —

Remark 1(X;Y) is symmetrical in X and Y.

Proposition 2.18 The mutual information between a random variable X and
itself is equal to the entropy of X, i.e., I(X;X) = H(X).

Proposition 2.19

and
I(X;Y)=HX)+HY)—- H(X,Y),

provided that all the entropies and conditional entropies are finite.



Information Diagram

H(X,Y)

H(X1Y) H(YIX)

H(Y
H(X) 1(X:T) (Y)



Definition 2.20 For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as

p(z, p(X,Y|Z)
2 p(X|Z)p(Y|Z)

I(X;Y|Z) = Zp x,y, z)log = Flog

T,Y,2

yl2)
p(x|2)p(y|2)

Remark [I(X;Y|Z) is symmetrical in X and Y.

Similar to entropy, we have

[(X:Y|Z) = Zp [(X:Y|Z = 2),

where

I(X;YZ = 2) =3 ple,yl2) log

L,Y

p(z,y|2)
p(x[2)p(ylz)



Proposition 2.21 The mutual information between a random variable X and

itself conditioning on a random variable Z is equal to the conditional entropy
of X given 7, ie., I(X; X|Z)=H(X|Z2).

Proposition 2.22

[(X:Y|Z2) = H(X|Z)- H(XIY,Z),
I(X:Y|Z2) = H(Y|Z)-H(Y|X,Z2),

and
I(X;Y|Z)=H(X|Z)+ HY|Z)—- H(X,Y|Z),

provided that all the conditional entropies are finite.

Remark All Shannon’s information measures are special cases of conditional
mutual information.



2.3 Continuity of Shannon’s
Information Measures for Fixed
Finite Alphabets

e All Shannon’s information measures are continuous when the alphabets
are fixed and finite.

e For countable alphabets, Shannon’s information measures are everywhere
discontinuous.



Definition 2.23 Let p and ¢ be two probability distributions on a common
alphabet X. The variational distance between p and q is defined as

V(p,q) = > Ip(x) —q(=)].

reX

The entropy function is continuous at p if

lim H(p') = H <1im p') = H(p),

p'—p p’'—p
or equivalently, for any € > 0, there exists 0 > 0 such that
[H(p) — H(q)| <e

for all ¢ € Py satistying
V(p,q) <4,



2.4 Chain Rules

Proposition 2.24 (Chain Rule for Entropy)

H(X17X27 T 7X’n) — ZH(XZ‘XL CT 7Xi—1)-
1=1

Proposition 2.25 (Chain Rule for Conditional Entropy)

H(X1, Xo, -, Xpl|Y) = ZH(Xi‘Xla e, Xie1, Y).
i=1



Proposition 2.26 (Chain Rule for Mutual Information)

[(X1,Xo,+ , XpY) =) I(X; Y| Xy, -, Xiq).
1=1

Proposition 2.27 (Chain Rule for Conditional Mutual Information)

I(X17X27 S 7Xn7Y|Z) — ZI(X?,7Y|X17 T 7Xi—1az)'
1=1



Proof of Proposition 2.25

H(X17X27°” 7Xn|Y)
— H(Xy,Xa,--,X,,Y) — H(Y)
— H((X17Y)7X27'” 7Xn)_H(Y)

— H(X17Y)+ZH(X1|X17 7Xi—17Y)_H(Y)
1=2

= H(X1lY)+ ZH(XJXL e, Xie1,Y)
i=2

= Y H(X|Xy, -, Xi1,Y),
1=1

where a) follows from Proposition 2.24 (chain rule for entropy).



Alternative Proof of
Proposition 2.25

H(X17X27 T 7Xn’Y)

- Zp ZHX|X1 1LY =)

= > ) pH(Xi| Xy, -, X1, Y =y)

=1 vy

= Y H(X|Xy, -, Xi1,Y),
1=1



2.5 Informational Divergence

Definition 2.28 The informational divergence between two probability distri-
butions p and ¢ on a common alphabet X is defined as

p(X)

p(x)
D(pl|q p(z log = F, log ,
H Z D q(X)

q(z)

where E,, denotes expectation with respect to p.

e Convention:

1. summation over &,

2. clog & = oo for ¢ > 0 — if D(p||q) < oo, then S, C S, .

e D(p|lq) measures the “distance” between p and gq.

e D(p|lq) is not symmetrical in p and ¢, so D(:||-) is not a true metric.

e D(-]|-) does not satisfy the triangular inequality.

e Also called relative entropy or the Kullback-Leibler distance.



Lemma 2.29 (Fundamental Inequality) For any a > 0,

lna<a-—1
with equality if and only if a = 1.
Corollary 2.30 For any a > 0,
1
lna>1-— —
a

with equality if and only if a = 1.






Theorem 2.31 (Divergence Inequality) For any two probability distribu-
tions p and g on a common alphabet X,

D(pllq) = 0

with equality if and only if p = q.



Theorem 2.32 (Log-Sum Inequality) For positive numbers aq,as, - and
nonnegative numbers by, by, - - - such that Y . a; < oo and 0 < ). b; < oo,

Z ; log b_ > (Z az> log %Z Z:

)

with the convention that log ¢ = co. Moreover, equality holds if and only if

‘g’b = constant for all 1.

7

Example:
ai; + az

b + by

aq log e a9 log > (a1 + a9) log

b1 b2



Divergence Inequality vs
Log-Sum Inequality

e The divergence inequality implies the log-sum inequality.
e The log-sum inequality also implies the divergence inequality.

e The two inequalities are equivalent.



Theorem 2.33 (Pinsker’s Inequality)

1

D D :

e If D(p||lq) or D(ql||p) is small, then so is V (p, q).

e For a sequence of probability distributions g, as k — oo, if D(pl||qx) — 0
or D(gx|[p) — 0, then V(p,qx) — 0.

e That is, “convergence in divergence” is a stronger notion than “conver-
gence in variational distance.”



2.6 The Basic Inequalities

Theorem 2.34 For random variables X, Y, and Z,
I(X;Y|Z) =0,

with equality if and only if X and Y are independent when conditioning on Z.

Corollary All Shannon’s information measures are nonnegative, because they
are all special cases of conditional mutual information.



Proposition 2.35 H(X) = 0 if and only if X is deterministic.
Proposition 2.36 H(Y|X) = 0 if and only if Y is a function of X.

Proposition 2.37 I(X;Y) =0 if and only if X and Y are independent.



2.7 Some Useful Information
Inequalities

Theorem 2.38 (Conditioning Does Not Increase Entropy)
H(Y|X)<H(Y)

with equality if and only if X and Y are independent.

o Similarly, H(Y|X, Z) < H(Y|Z).
e Warning: I(X;Y|Z) < I(X;Y) does not hold in general.

Theorem 2.39 (Independence Bound for Entropy)
H(X1, X2, X,) <Y H(X;)
i=1

with equality if and only if X;, 2 =1,2,--- ,n are mutually independent.



Theorem 2.40
I(X;Y, Z) > I[(X;Y),

with equality if and only if X — Y — Z forms a Markov chain.

Lemma 2.41 If X — Y — Z forms a Markov chain, then
I(X;Z) <I(X;Y)

and

I[(X;2) < I(Y;2).

Corollary
e If X Y — 7, then H(X|Z) > H(X|Y).

e Suppose Y is an observation of X. Then further processing of Y can only
increase the uncertainty about X on the average.



Theorem 2.42 (Data Processing Theorem) If U —- X — Y — V forms
a Markov chain, then
I(U;V) < I(X;Y).



Fano’s Inequality

Theorem 2.43 For any random variable X,
H(X) <log|X],

where |X| denotes the size of the alphabet X'. This upper bound is tight if and
only if X is distributed uniformly on X'.

Corollary 2.44 The entropy of a random variable may take any nonnegative
real value.

Remark The entropy of a random variable
e is finite if its alphabet is finite.

e can be finite or infinite if its alphabet is finite (see Examples 2.45 and
2.46).



Theorem 2.47 (Fano’s Inequality) Let X and X be random variables taking
values in the same alphabet A'. Then

H(X|X) < hy(P.) + P.log(|1X] — 1),

where hp is the binary entropy function.
Corollary 2.48 H(X|X) < 1+ P.log|X]|.

Interpretation
e For finite alphabet, if P, — 0, then H(X|X) — 0.

e This may NOT hold for countably infinite alphabet (see Example 2.49).



