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2.1 Independence and Markov Chain

Notations

X discrete random variable taking values in X
{pX(x)} probability distribution for X
SX support of X

• If SX = X , we say that p is strictly positive.

• Non-strictly positive distributions are dangerous.



Definition 2.1 Two random variables X and Y are independent, denoted by
X ⊥ Y , if

p(x, y) = p(x)p(y)

for all x and y (i.e., for all (x, y) ∈ X × Y).

Definition 2.2 (Mutual Independence) For n ≥ 3, random variables
X1, X2, · · · , Xn are mutually independent if

p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn)

for all x1, x2, · · · , xn.

Definition 2.3 (Pairwise Independence) For n ≥ 3, random variables
X1, X2, · · · , Xn are pairwise independent if Xi and Xj are independent for all
1 ≤ i < j ≤ n.



Definition 2.4 (Conditional Independence) For random variables X, Y ,
and Z, X is independent of Z conditioning on Y , denoted by X ⊥ Z|Y , if

p(x, y, z)p(y) = p(x, y)p(y, z)

for all x, y, and z, or equivalently,

p(x, y, z) =

{
p(x,y)p(y,z)

p(y) = p(x, y)p(z|y) if p(y) > 0
0 otherwise.



Proposition 2.5 For random variables X, Y , and Z, X ⊥ Z|Y if and only if

p(x, y, z) = a(x, y)b(y, z)

for all x, y, and z such that p(y) > 0.



Proposition 2.6 (Markov Chain) For random variables X1, X2, · · · , Xn,
where n ≥ 3, X1 → X2 → · · · → Xn forms a Markov chain if

p(x1, x2, · · · , xn)p(x2)p(x3) · · · p(xn−1)
= p(x1, x2)p(x2, x3) · · · p(xn−1, xn)

for all x1, x2, · · · , xn, or equivalently,

p(x1, x2, · · · , xn) =
{

p(x1, x2)p(x3|x2) · · · p(xn|xn−1) if p(x2), p(x3), · · · , p(xn−1) > 0
0 otherwise.

Proposition 2.7 X1 → X2 → · · · → Xn forms a Markov chain if and only if
Xn → Xn−1 → · · · → X1 forms a Markov chain.



Proposition 2.8 X1 → X2 → · · · → Xn forms a Markov chain if and only if

X1 → X2 → X3

(X1, X2)→ X3 → X4

...
(X1, X2, · · · , Xn−2)→ Xn−1 → Xn

form Markov chains.

Proposition 2.9 X1 → X2 → · · · → Xn forms a Markov chain if and only if

p(x1, x2, · · · , xn) = f1(x1, x2)f2(x2, x3) · · · fn−1(xn−1, xn)

for all x1, x2, · · · , xn such that p(x2), p(x3), · · · , p(xn−1) > 0.



Proposition 2.10 (Markov subchains) Let Nn = {1, 2, · · · , n} and let
X1 → X2 → · · · → Xn form a Markov chain. For any subset α of Nn, denote
(Xi, i ∈ α) by Xα. Then for any disjoint subsets α1, α2, · · · , αm of Nn such that

k1 < k2 < · · · < km

for all kj ∈ αj , j = 1, 2, · · · , m,

Xα1 → Xα2 → · · ·→ Xαm

forms a Markov chain. That is, a subchain of X1 → X2 → · · · → Xn is also a
Markov chain.

Example 2.11 Let X1 → X2 → · · · → X10 form a Markov chain and
α1 = {1, 2}, α2 = {4}, α3 = {6, 8}, and α4 = {10} be subsets of N10. Then
Proposition 2.10 says that

(X1, X2)→ X4 → (X6, X8)→ X10

also forms a Markov chain.



Proposition 2.12 Let X1, X2, X3, and X4 be random variables such that
p(x1, x2, x3, x4) is strictly positive. Then

X1 ⊥ X4|(X2, X3)
X1 ⊥ X3|(X2, X4)

}
⇒ X1 ⊥ (X3, X4)|X2.

• Not true if p is not strictly positive

• Let X1 = Y , X2 = Z, and X3 = X4 = (Y,Z), where Y ⊥ Z

• Then X1 ⊥ X4|(X2, X3), X1 ⊥ X3|(X2, X4), but X1 #⊥ (X3, X4)|X2.

• p is not strictly positive because p(x1, x2, x3, x4) = 0 if x3 #= (x1, x2) or
x4 #= (x1, x2).



2.2 Shannon’s Information Measures

• Entropy

• Conditional entropy

• Mutual information

• Conditional mutual information



Definition 2.13 The entropy H(X) of a random variable X is defined as

H(X) = −
∑

x

p(x) log p(x).

• Convention: summation is taken over SX .

• When the base of the logarithm is α, write H(X) as Hα(X).

• Entropy measures the uncertainty of a discrete random variable.

• The unit for entropy is

bit if α = 2
nat if α = e
D-it if α = D

• H(X) depends only on the distribution of X but not on the actual value
taken by X, hence also write H(p).

• A bit in information theory is different from a bit in computer science.



Entropy as Expectation

• Convention
Eg(X) =

∑

x

p(x)g(x)

where summation is over SX .

• Linearity
E[f(X) + g(X)] = Ef(X) + Eg(X)

• Can write
H(X) = −E log p(X) = −

∑

x

p(x) log p(x)

• In probability theory, when Eg(X) is considered, usually g(x) depends
only on the value of x but not on p(x).



Binary Entropy Function

• For 0 ≤ γ ≤ 1, define the binary entropy function

hb(γ) = −γ log γ − (1− γ) log(1− γ)

with the convention 0 log 0 = 0.

• For X ∼ {γ, 1− γ},
H(X) = hb(γ).

• hb(γ) achieves the maximum value 1 when γ = 1
2 .
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Definition 2.14 The joint entropy H(X, Y ) of a pair of random variables X
and Y is defined as

H(X, Y ) = −
∑

x,y

p(x, y) log p(x, y) = −E log p(X, Y ).

Definition 2.15 For random variables X and Y , the conditional entropy of
Y given X is defined as

H(Y |X) = −
∑

x,y

p(x, y) log p(y|x) = −E log p(Y |X).



• Write

H(Y |X) =
∑

x

p(x)

[
−

∑

y

p(y|x) log p(y|x)

]
.

• The inner sum is the entropy of Y conditioning on a fixed x ∈ SX , denoted
by H(Y |X = x).

• Thus
H(Y |X) =

∑

x

p(x)H(Y |X = x),

• Similarly,
H(Y |X, Z) =

∑

z

p(z)H(Y |X, Z = z),

where
H(Y |X,Z = z) = −

∑

x,y

p(x, y|z) log p(y|x, z).



Proposition 2.16
H(X, Y ) = H(X) + H(Y |X)

and
H(X, Y ) = H(Y ) + H(X|Y ).

Proof Consider

H(X, Y ) = −E log p(X, Y )
a)
= −E log[p(X)p(Y |X)]
b)
= −E log p(X)− E log p(Y |X)
= H(X) + H(Y |X).

a) summation is over SXY

b) linearity of expectation



Definition 2.17 For random variables X and Y , the mutual information be-
tween X and Y is defined as

I(X;Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
= E log

p(X,Y )
p(X)p(Y )

.

Remark I(X;Y ) is symmetrical in X and Y .

Proposition 2.18 The mutual information between a random variable X and
itself is equal to the entropy of X, i.e., I(X;X) = H(X).

Proposition 2.19

I(X;Y ) = H(X)−H(X|Y ),
I(X;Y ) = H(Y )−H(Y |X),

and
I(X;Y ) = H(X) + H(Y )−H(X, Y ),

provided that all the entropies and conditional entropies are finite.



Information Diagram

H ( X , Y ) 

H ( X | Y ) H ( Y|X ) 

H ( Y ) 
I ( X ; Y ) 

H ( X ) 



Definition 2.20 For random variables X, Y and Z, the mutual information
between X and Y conditioning on Z is defined as

I(X;Y |Z) =
∑

x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
= E log

p(X, Y |Z)
p(X|Z)p(Y |Z)

.

Remark I(X;Y |Z) is symmetrical in X and Y .

Similar to entropy, we have

I(X;Y |Z) =
∑

z

p(z)I(X;Y |Z = z),

where
I(X;Y |Z = z) =

∑

x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.



Proposition 2.21 The mutual information between a random variable X and
itself conditioning on a random variable Z is equal to the conditional entropy
of X given Z, i.e., I(X;X|Z) = H(X|Z).

Proposition 2.22

I(X;Y |Z) = H(X|Z)−H(X|Y,Z),
I(X;Y |Z) = H(Y |Z)−H(Y |X, Z),

and
I(X;Y |Z) = H(X|Z) + H(Y |Z)−H(X, Y |Z),

provided that all the conditional entropies are finite.

Remark All Shannon’s information measures are special cases of conditional
mutual information.



2.3 Continuity of Shannon’s 
Information Measures for Fixed 
Finite Alphabets

• All Shannon’s information measures are continuous when the alphabets
are fixed and finite.

• For countable alphabets, Shannon’s information measures are everywhere
discontinuous.



Definition 2.23 Let p and q be two probability distributions on a common
alphabet X . The variational distance between p and q is defined as

V (p, q) =
∑

x∈X
|p(x)− q(x)|.

The entropy function is continuous at p if

lim
p′→p

H(p′) = H

(
lim

p′→p
p′

)
= H(p),

or equivalently, for any ε > 0, there exists δ > 0 such that

|H(p)−H(q)| < ε

for all q ∈ PX satisfying
V (p, q) < δ,



2.4  Chain Rules                     

Proposition 2.24 (Chain Rule for Entropy)

H(X1, X2, · · · , Xn) =
n∑

i=1

H(Xi|X1, · · · , Xi−1).

Proposition 2.25 (Chain Rule for Conditional Entropy)

H(X1, X2, · · · , Xn|Y ) =
n∑

i=1

H(Xi|X1, · · · , Xi−1, Y ).



Proposition 2.26 (Chain Rule for Mutual Information)

I(X1, X2, · · · , Xn;Y ) =
n∑

i=1

I(Xi;Y |X1, · · · , Xi−1).

Proposition 2.27 (Chain Rule for Conditional Mutual Information)

I(X1, X2, · · · , Xn;Y |Z) =
n∑

i=1

I(Xi;Y |X1, · · · , Xi−1, Z).



Proof of Proposition 2.25

H(X1, X2, · · · , Xn|Y )
= H(X1, X2, · · · , Xn, Y )−H(Y )
= H((X1, Y ), X2, · · · , Xn)−H(Y )

a)
= H(X1, Y ) +

n∑

i=2

H(Xi|X1, · · · , Xi−1, Y )−H(Y )

= H(X1|Y ) +
n∑

i=2

H(Xi|X1, · · · , Xi−1, Y )

=
n∑

i=1

H(Xi|X1, · · · , Xi−1, Y ),

where a) follows from Proposition 2.24 (chain rule for entropy).



Alternative Proof of 
Proposition 2.25

H(X1, X2, · · · , Xn|Y )

=
∑

y

p(y)H(X1, X2, · · · , Xn|Y = y)

=
∑

y

p(y)
n∑

i=1

H(Xi|X1, · · · , Xi−1, Y = y)

=
n∑

i=1

∑

y

p(y)H(Xi|X1, · · · , Xi−1, Y = y)

=
n∑

i=1

H(Xi|X1, · · · , Xi−1, Y ),



2.5  Informational Divergence                   
Definition 2.28 The informational divergence between two probability distri-
butions p and q on a common alphabet X is defined as

D(p‖q) =
∑

x

p(x) log
p(x)
q(x)

= Ep log
p(X)
q(X)

,

where Ep denotes expectation with respect to p.

• Convention:

1. summation over Sp

2. c log c
0 = ∞ for c > 0 — if D(p‖q) < ∞, then Sp ⊂ Sq .

• D(p‖q) measures the “distance” between p and q.

• D(p‖q) is not symmetrical in p and q, so D(·‖·) is not a true metric.

• D(·‖·) does not satisfy the triangular inequality.

• Also called relative entropy or the Kullback-Leibler distance.



Lemma 2.29 (Fundamental Inequality) For any a > 0,

ln a ≤ a− 1

with equality if and only if a = 1.

Corollary 2.30 For any a > 0,

ln a ≥ 1− 1
a

with equality if and only if a = 1.
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Theorem 2.31 (Divergence Inequality) For any two probability distribu-
tions p and q on a common alphabet X ,

D(p‖q) ≥ 0

with equality if and only if p = q.



Theorem 2.32 (Log-Sum Inequality) For positive numbers a1, a2, · · · and
nonnegative numbers b1, b2, · · · such that

∑
i ai <∞ and 0 <

∑
i bi <∞,

∑

i

ai log
ai

bi
≥

(
∑

i

ai

)
log

∑
i ai∑
i bi

with the convention that log ai
0 = ∞. Moreover, equality holds if and only if

ai
bi

= constant for all i.

Example:
a1 log

a1

b1
+ a2 log

a2

b2
≥ (a1 + a2) log

a1 + a2

b1 + b2
.



• The divergence inequality implies the log-sum inequality.

• The log-sum inequality also implies the divergence inequality.

• The two inequalities are equivalent.

Divergence Inequality vs 
Log-Sum Inequality



Theorem 2.33 (Pinsker’s Inequality)

D(p‖q) ≥ 1
2 ln 2

V 2(p, q).

• If D(p‖q) or D(q‖p) is small, then so is V (p, q).

• For a sequence of probability distributions qk, as k →∞, if D(p‖qk)→ 0
or D(qk‖p)→ 0, then V (p, qk)→ 0.

• That is, “convergence in divergence” is a stronger notion than “conver-
gence in variational distance.”



2.6 The Basic Inequalities

Theorem 2.34 For random variables X, Y , and Z,

I(X;Y |Z) ≥ 0,

with equality if and only if X and Y are independent when conditioning on Z.

Corollary All Shannon’s information measures are nonnegative, because they
are all special cases of conditional mutual information.



Proposition 2.35 H(X) = 0 if and only if X is deterministic.

Proposition 2.36 H(Y |X) = 0 if and only if Y is a function of X.

Proposition 2.37 I(X;Y ) = 0 if and only if X and Y are independent.



2.7 Some Useful Information 
Inequalities

Theorem 2.38 (Conditioning Does Not Increase Entropy)

H(Y |X) ≤ H(Y )

with equality if and only if X and Y are independent.

• Similarly, H(Y |X,Z) ≤ H(Y |Z).

• Warning: I(X;Y |Z) ≤ I(X;Y ) does not hold in general.

Theorem 2.39 (Independence Bound for Entropy)

H(X1, X2, · · · , Xn) ≤
n∑

i=1

H(Xi)

with equality if and only if Xi, i = 1, 2, · · · , n are mutually independent.



Theorem 2.40
I(X;Y,Z) ≥ I(X;Y ),

with equality if and only if X → Y → Z forms a Markov chain.

Lemma 2.41 If X → Y → Z forms a Markov chain, then

I(X;Z) ≤ I(X;Y )

and
I(X;Z) ≤ I(Y ;Z).

Corollary

• If X → Y → Z, then H(X|Z) ≥ H(X|Y ).

• Suppose Y is an observation of X. Then further processing of Y can only
increase the uncertainty about X on the average.



Theorem 2.42 (Data Processing Theorem) If U → X → Y → V forms
a Markov chain, then

I(U ;V ) ≤ I(X;Y ).



Fano’s Inequality

Theorem 2.43 For any random variable X,

H(X) ≤ log |X |,

where |X | denotes the size of the alphabet X . This upper bound is tight if and
only if X is distributed uniformly on X .

Corollary 2.44 The entropy of a random variable may take any nonnegative
real value.

Remark The entropy of a random variable

• is finite if its alphabet is finite.

• can be finite or infinite if its alphabet is finite (see Examples 2.45 and
2.46).



Theorem 2.47 (Fano’s Inequality) Let X and X̂ be random variables taking
values in the same alphabet X . Then

H(X|X̂) ≤ hb(Pe) + Pe log(|X | − 1),

where hb is the binary entropy function.

Corollary 2.48 H(X|X̂) < 1 + Pe log |X |.

Interpretation

• For finite alphabet, if Pe → 0, then H(X|X̂)→ 0.

• This may NOT hold for countably infinite alphabet (see Example 2.49).


